
This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Lab 14

Total Time:
3 hours

Pre-Lab Activities:

● No Pre-Lab Activity

Learning Outcomes:
● Perform the concepts of what React is and how it works.

Lab Tasks:
o React JSX

o Coding JSX

o Expressions in JSX

o Inserting large blocks of HTML

o Attribute Class

o React Components

o Rendering Components

o Using State Objects

Student Activities:
o Explore React JSX

o Explore Coding JSX

o Explore Expressions in JSX

o Explore Inserting large blocks of HTML

o Explore Attribute Class

o Explore React Components

o Explore Rendering Components

o Explore Using State Objects

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Lab Solution

React JSX:

What is JSX?

JSX stands for JavaScript XML.

JSX allows us to write HTML in React.

JSX makes it easier to write and add HTML in React.

Coding JSX:

SX allows us to write HTML elements in JavaScript and place them in the DOM
without any createElement() and/or appendChild() methods.

JSX converts HTML tags into react elements.

You are not required to use JSX, but JSX makes it easier to write React
applications.

Here are two examples. The first uses JSX and the second does not:

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Example 1:

JSX:

const myElement =<h1>I Love JSX!</h1>;

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(myElement);

Example 2:

JSX:

const myElement = React.createElement('h1',{},'I do not use

JSX!');

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(myElement);

As you can see in the first example, JSX allows us to write HTML directly within
the JavaScript code.

JSX is an extension of the JavaScript language based on ES6, and is translated
into regular JavaScript at runtime.

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Expressions in JSX:

With JSX you can write expressions inside curly braces { }.

The expression can be a React variable, or property, or any other valid
JavaScript expression. JSX will execute the expression and return the result:

Example:

Execute the expression 5 + 5:

const myElement =<h1>React is {5+5} times better with JSX</h1>;

Inserting a Large Block of HTML:

Create a list with three list items:

const myElement =(

Apples

Bananas

Cherries

);

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Example:

Wrap two paragraphs inside one DIV element:

const myElement = (

<div>

<p>I am a paragraph.</p>

<p>I am a paragraph too.</p>

</div>

);

JSX will throw an error if the HTML is not correct, or if the HTML misses a parent
element.

Alternatively, you can use a "fragment" to wrap multiple lines. This will prevent
unnecessarily adding extra nodes to the DOM.

A fragment looks like an empty HTML tag: <></>.

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Example:

Wrap two paragraphs inside a fragment:

const myElement =(

<>

<p>I am a paragraph.</p>

<p>I am a paragraph too.</p>

</>

);

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Example:

Close empty elements with />

const myElement =<input type="text"/>;

JSX will throw an error if the HTML is not properly closed.

Attribute class = className:

The classattribute is a much used attribute in HTML, but since JSX is rendered
as JavaScript, and the classkeyword is a reserved word in JavaScript, you are
not allowed to use it in JSX.

Use attribute className instead.

JSX solved this by using classNameinstead. When JSX is rendered, it translates
classNameattributes into classattributes.

Example:

Use attributeclassNameinstead ofclassin JSX:

const myElement =<h1 className="myclass">Hello World</h1>;

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Conditions - if statements:

React supports ifstatements, but not inside JSX.

To be able to use conditional statements in JSX, you should put the
ifstatements outside of the JSX, or you could use a ternary expression instead:

Option 1:

Write ifstatements outside of the JSX code:

Write "Hello" ifxis less than 10, otherwise "Goodbye":

const x =5;

let text ="Goodbye";

if (x <10){

 text ="Hello";

}

const myElement =<h1>{text}</h1>;

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Option 2:

Use ternary expressions instead:

Example:

Write "Hello" if xis less than 10, otherwise "Goodbye":

const x =5;

const myElement =<h1>{(x)<10?"Hello":"Goodbye"}</h1>;

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Note that in order to embed a JavaScript expression inside JSX, the JavaScript
must be wrapped with curly braces, {}.

React Components:

Components are like functions that return HTML elements.

Components are independent and reusable bits of code. They serve the same
purpose as JavaScript functions, but work in isolation and return HTML.

Components come in two types, Class components and Function components, in
this tutorial we will concentrate on Function components.

In older React code bases, you may find Class components primarily used. It
is now suggested to use Function components along with Hooks, which were
added in React 16.8. There is an optional section on Class components for
your reference.

Create Your First Component:

When creating a React component, the component's name MUST start with an
uppercase letter.

Class Component:

A class component must include the extends React.Component statement.
This statement creates an inheritance to React.Component, and gives your
component access to React.Component's functions.

The component also requires a render() method, this method returns HTML.

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Example:

Create a Class component called Car

class Car extends React.Component{

render(){

 return <h2>Hi, I am a Car!</h2>;

}

}

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Example:

Create a Function component called Car

function Car(){

 return <h2>Hi, I am a Car!</h2>;

}

Rendering a Component:

Now your React application has a component called Car, which returns an <h2>
element.

To use this component in your application, use similar syntax as normal HTML:
<Car />

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(<Car/>);

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Props:

Components can be passed as props, which stands for properties.

Props are like function arguments, and you send them into the component as
attributes.

You will learn more about propsin the next chapter.

Example:

Use an attribute to pass a color to the Car component, and use it in the render()
function:

function Car(props){

 return <h2>I am a {props.color} Car!</h2>;

}

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(<Carcolor="red"/>);

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Components in Components:

We can refer to components inside other components:

Example:

Use the Car component inside the Garage component:

function Car(){

 return <h2>I am a Car!</h2>;

}

function Garage(){

 return (

<>

<h1>Who lives in my Garage?</h1>

<Car/>

</>

);

}

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(<Garage/>);

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Components in Files:

React is all about re-using code, and it is recommended to split your
components into separate files.

To do that, create a new file with a .js file extension and put the code inside it:

Note that the filename must start with an uppercase character.

Example:

This is the new file, we named it "Car.js":

function Car(){

 return <h2>Hi, I am a Car!</h2>;

}

export default Car;

To be able to use the Car component, you have to import the file in your
application.

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Example:

Now we import the "Car.js" file in the application, and we can use the
Carcomponent as if it was created here.

import React from 'react';

import ReactDOM from 'react-dom/client';

import Car from './Car.js';

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(<Car/>);

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

React Class Components:

Before React 16.8, Class components were the only way to track state and
lifecycle on a React component. Function components were considered "state-
less".

With the addition of Hooks, Function components are now almost equivalent to
Class components. The differences are so minor that you will probably never
need to use a Class component in React.

Even though Function components are preferred, there are no current plans on
removing Class components from React.

This section will give you an overview of how to use Class components in React.

React Components:

Components are independent and reusable bits of code. They serve the same
purpose as JavaScript functions, but work in isolation and return HTML via a
render() function.

Components come in two types, Class components and Function components, in
this chapter you will learn about Class components.

Create a Class Component:

When creating a React component, the component's name must start with an
upper case letter.

The component has to include the extends React.Component statement, this
statement creates an inheritance to React.Component, and gives your
component access to React.Component's functions.

The component also requires a render() method, this method returns HTML.

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Example

Create a Class component called Car

class Car extends React.Component{

render(){

 return <h2>Hi, I am a Car!</h2>;

}

}

Now your React application has a component called Car, which returns a <h2>
element.

To use this component in your application, use similar syntax as normal HTML:
<Car />

Example:

Display the Carcomponent in the "root" element:

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(<Car/>);

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Component Constructor:

If there is a constructor() function in your component, this function will be
called when the component gets initiated.

The constructor function is where you initiate the component's properties.

In React, component properties should be kept in an object called state.

You will learn more about statelater in this tutorial.

The constructor function is also where you honor the inheritance of the parent
component by including the super() statement, which executes the parent
component's constructor function, and your component has access to all the
functions of the parent component (React.Component).

Example:

Create a constructor function in the Car component, and add a color property:

class Car extends React.Component{

constructor(){

 super();

 this.state ={color:"red"};

}

render(){

 return <h2>I am a Car!</h2>;

}

}

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Use the color property in the render() function:

Example:

class Car extends React.Component{

constructor(){

 super();

 this.state ={color:"red"};

}

render(){

 return <h2>I am a {this.state.color} Car!</h2>;

}

}

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Props:

Another way of handling component properties is by using props.

Props are like function arguments, and you send them into the component as
attributes.

You will learn more about propsin the next chapter.

Example:

Use an attribute to pass a color to the Car component, and use it in the render()
function:

class Car extends React.Component{

render(){

 return <h2>I am a {this.props.color} Car!</h2>;

}

}

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(<Carcolor="red"/>);

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Props in the Constructor:

If your component has a constructor function, the props should always be
passed to the constructor and also to the React.Component via the super()
method.

Example:

Use an attribute to pass a color to the Car component, and use it in the render()
function:

class Car extends React.Component{

constructor(props){

 super(props);

}

render(){

 return <h2>I am a {this.props.model}!</h2>;

}

}

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(<Carmodel="Mustang"/>);

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Components in Components:

We can refer to components inside other components:

Example:

Use the Car component inside the Garage component:

class Car extends React.Component{

render(){

 return <h2>I am a Car!</h2>;

}

}

class Garage extends React.Component{

render(){

 return (

<div>

<h1>Who lives in my Garage?</h1>

<Car/>

</div>

);

}

}

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(<Garage/>);

Components in Files:

React is all about re-using code, and it can be smart to insert some of your
components in separate files.

To do that, create a new file with a .js file extension and put the code inside it:

Note that the file must start by importing React (as before), and it has to end
with the statement export default Car;.

Example:

Use the Car component inside the Garage component:

import React from 'react';

classCar extends React.Component{

render(){

 return <h2>Hi, I am a Car!</h2>;

}

}

export default Car;

To be able to use the Carcomponent, you have to import the file in your
application.

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Example:

Now we import the Car.js file in the application, and we can use the
Carcomponent as if it was created here.

import React from 'react';

import ReactDOM from 'react-dom/client';

import Car from './Car.js';

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(<Car/>);

React Class Component State:

React Class components have a built-in stateobject.

You might have noticed that we used stateearlier in the component constructor
section.

The stateobject is where you store property values that belongs to the
component.

When the stateobject changes, the component re-renders.

Creating the state Object:

The state object is initialized in the constructor:

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Example:

Specify the stateobject in the constructor method:

class Car extends React.Component{

constructor(props){

 super(props);

 this.state ={brand:"Ford"};

}

render(){

 return (

<div>

<h1>My Car</h1>

</div>

);

}

}

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

The state object can contain as many properties as you like:

Example:

Specify all the properties your component need:

class Car extends React.Component{

constructor(props){

 super(props);

 this.state ={

 brand:"Ford",

 model:"Mustang",

 color:"red",

 year:1964

};

}

render(){

 return (

<div>

<h1>My Car</h1>

</div>

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

);

}

}

Using the stateObject

Refer to the stateobject anywhere in the component by using the
this.state.propertyname syntax:

Example:

Refer to the stateobject in the render() method:

class Car extends React.Component{

constructor(props){

 super(props);

 this.state ={

 brand:"Ford",

 model:"Mustang",

 color:"red",

 year:1964

};

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

}

render(){

 return (

<div>

<h1>My {this.state.brand}</h1>

<p>

 It is a {this.state.color}

{this.state.model}

 from {this.state.year}.

</p>

</div>

);

}

}

Changing the state Object:

To change a value in the state object, use the this.setState() method.

When a value in the stateobject changes, the component will re-render,
meaning that the output will change according to the new value(s).

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Example:

Add a button with an onClickevent that will change the color property:

class Car extends React.Component{

constructor(props){

 super(props);

 this.state ={

 brand:"Ford",

 model:"Mustang",

 color:"red",

 year:1964

};

}

changeColor=()=>{

 this.setState({color:"blue"});

}

render(){

 return (

<div>

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

<h1>My {this.state.brand}</h1>

<p>

 It is a {this.state.color}

{this.state.model}

 from {this.state.year}.

</p>

<button

type="button"

onClick={this.changeColor}

>Change color</button>

</div>

);

}

}

Always use the setState() method to change the state object, it will ensure
that the component knows its been updated and calls the render() method (and
all the other lifecycle methods).

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

	Lab Solution
	React JSX:
	What is JSX?

	Coding JSX:
	Example 1:
	Example 2:
	Expressions in JSX:
	Example:
	Inserting a Large Block of HTML:
	Example:
	Example:
	Example:
	Attribute class = className:
	Example:
	Conditions - if statements:
	Option 1:
	Option 2:
	Example:
	React Components:
	Create Your First Component:
	Class Component:
	Example:
	Example:
	Rendering a Component:
	Props:
	Example:
	Components in Components:
	Example:
	Components in Files:
	Example:
	Example:
	React Class Components:
	React Components:
	Create a Class Component:
	Example
	Example:
	Component Constructor:
	Example:
	Example:
	Props:
	Example:
	Props in the Constructor:
	Example:
	Components in Components:
	Example:
	Components in Files:
	Example:
	Example:
	React Class Component State:
	Creating the state Object:
	Example:
	Example:
	Using the stateObject
	Example:
	Changing the state Object:
	Example:

