
This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Lab 16

Total Time:
3 hours

Pre-Lab Activities:

 No Pre-Lab Activity

Learning Outcomes:

 Getting Started with React Redux

Lab Tasks:
o Getting a text Editor

o Installing Node in the local machine

o Installing Express and React

o Installing our database locally (MongoDB)

Student Activities:
o To exploretext Editor

o To exploreNode in the local machine

o To exploreExpress and React

o To exploreMongoDB

Pre-Reqs of the Lab
Before you begin the Lab, you must have gone through the video lectures, lecture slides shared.

Contents of the Lab
After completing the above exercises go to https://react-redux.js.org/introduction/getting-started in
order to install and use React Redux

Learning outcome of the Lab
After the lab you will be equipped with contents provided in the lab manual.

Good Luck!

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Lab Solution

Getting Started with React Redux

React Redux is the official React UI bindings layer for Redux. It lets your React components read
data from a Redux store, and dispatch actions to the store to update state.

Installation

React Redux 8.x requires React 16.8.3 or later / React Native 0.59 or later, in order to make use
of React Hooks.

Using Create React App

The recommended way to start new apps with React and Redux is by using the official Redux+JS
template or Redux+TS template for Create React App, which takes advantage of Redux
Toolkit and React Redux's integration with React components.

Redux + Plain JS template
npx create-react-app my-app --template redux

Redux + TypeScript template
npx create-react-app my-app --template redux-typescript

An Existing React App

To use React Redux with your React app, install it as a dependency:

If you use npm:
npm install react-redux

Or if you use Yarn:
yarn add react-redux

You'll also need to install Redux and set up a Redux store in your app.

React-Redux v8 is written in TypeScript, so all types are automatically included.

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

API Overview

Provider

React Redux includes a <Provider /> component, which makes the Redux store available to the
rest of your app:

import React from 'react'
import ReactDOM from 'react-dom/client'

import { Provider } from 'react-redux'
import store from './store'

import App from './App'

// As of React 18
const root = ReactDOM.createRoot(document.getElementById('root'))
root.render(
<Provider store={store}>
<App />
</Provider>
)

Hooks

React Redux provides a pair of custom React hooks that allow your React components to
interact with the Redux store.

useSelector reads a value from the store state and subscribes to updates,
while useDispatch returns the store's dispatch method to let you dispatch actions.

import React from 'react'
import { useSelector, useDispatch } from 'react-redux'
import {
 decrement,
 increment,
 incrementByAmount,
 incrementAsync,
 selectCount,
} from './counterSlice'
import styles from './Counter.module.css'

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

export function Counter() {
 const count = useSelector(selectCount)
 const dispatch = useDispatch()

 return (
<div>
<div className={styles.row}>
<button
 className={styles.button}
 aria-label="Increment value"
 onClick={() => dispatch(increment())}
>
 +
</button>
{count}
<button
 className={styles.button}
 aria-label="Decrement value"
 onClick={() => dispatch(decrement())}
>
 -
</button>
</div>
 {/* omit additional rendering output here */}
</div>
)
}

Learning React Redux

Learn Modern Redux Livestream

Redux maintainer Mark Erikson appeared on the "Learn with Jason" show to explain how we
recommend using Redux today. The show includes a live-coded example app that shows how to
use Redux Toolkit and React-Redux hooks with Typescript, as well as the new RTK Query data
fetching APIs.

See the "Learn Modern Redux" show notes page for a transcript and links to the example app
source.

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

Help and Discussion

The #redux channel of the Reactiflux Discord community is our official resource for all questions
related to learning and using Redux. Reactiflux is a great place to hang out, ask questions, and
learn - come join us!

You can also ask questions on Stack Overflow using the #redux tag.

Install Redux Toolkit and React Redux

Add the Redux Toolkit and React Redux packages to your project:

npm install @reduxjs/toolkit react-redux

Create a Redux Store

Create a file named src/app/store.js. Import the configureStore API from Redux Toolkit. We'll
start by creating an empty Redux store, and exporting it:

app/store.js

import { configureStore } from '@reduxjs/toolkit'

export default configureStore({
 reducer: {},
})

This creates a Redux store, and also automatically configure the Redux DevTools extension so
that you can inspect the store while developing.

Provide the Redux Store to React

Once the store is created, we can make it available to our React components by putting a React
Redux <Provider> around our application in src/index.js. Import the Redux store we just
created, put a <Provider> around your <App>, and pass the store as a prop:

index.js

import React from 'react'
import ReactDOM from 'react-dom/client'

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

import './index.css'
import App from './App'
import store from './app/store'
import { Provider } from 'react-redux'

// As of React 18
const root = ReactDOM.createRoot(document.getElementById('root'))

root.render(
<Provider store={store}>
<App />
</Provider>
)

Create a Redux State Slice

Add a new file named src/features/counter/counterSlice.js. In that file, import
the createSlice API from Redux Toolkit.

Creating a slice requires a string name to identify the slice, an initial state value, and one or
more reducer functions to define how the state can be updated. Once a slice is created, we can
export the generated Redux action creators and the reducer function for the whole slice.

Redux requires that we write all state updates immutably, by making copies of data and
updating the copies. However, Redux Toolkit's createSlice and createReducer APIs
use Immer inside to allow us to write "mutating" update logic that becomes correct immutable
updates.

features/counter/counterSlice.js

import { createSlice } from '@reduxjs/toolkit'

export const counterSlice = createSlice({
 name: 'counter',
 initialState: {
 value: 0,
 },
 reducers: {
 increment: (state) => {
 // Redux Toolkit allows us to write "mutating" logic in reducers. It
 // doesn't actually mutate the state because it uses the Immer library,
 // which detects changes to a "draft state" and produces a brand new
 // immutable state based off those changes

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

 state.value += 1
 },
 decrement: (state) => {
 state.value -= 1
 },
 incrementByAmount: (state, action) => {
 state.value += action.payload
 },
 },
})

// Action creators are generated for each case reducer function
export const { increment, decrement, incrementByAmount } = counterSlice.actions

export default counterSlice.reducer

Add Slice Reducers to the Store

Next, we need to import the reducer function from the counter slice and add it to our store. By
defining a field inside the reducers parameter, we tell the store to use this slice reducer function
to handle all updates to that state.

app/store.js

import { configureStore } from '@reduxjs/toolkit'
import counterReducer from '../features/counter/counterSlice'

export default configureStore({
 reducer: {
 counter: counterReducer,
 },
})

Use Redux State and Actions in React Components

Now we can use the React Redux hooks to let React components interact with the Redux store.
We can read data from the store with useSelector, and dispatch actions using useDispatch.
Create a src/features/counter/Counter.js file with a <Counter> component inside, then import
that component into App.js and render it inside of <App>.

features/counter/Counter.js

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

import React from 'react'
import { useSelector, useDispatch } from 'react-redux'
import { decrement, increment } from './counterSlice'
import styles from './Counter.module.css'

export function Counter() {
 const count = useSelector((state) => state.counter.value)
 const dispatch = useDispatch()

 return (
<div>
<div>
<button
 aria-label="Increment value"
 onClick={() => dispatch(increment())}
>
 Increment
</button>
{count}
<button
 aria-label="Decrement value"
 onClick={() => dispatch(decrement())}
>
 Decrement
</button>
</div>
</div>
)
}

Now, any time you click the "Increment" and "Decrement buttons:

 The corresponding Redux action will be dispatched to the store
 The counter slice reducer will see the actions and update its state
 The <Counter> component will see the new state value from the store and re-render

itself with the new data

What You've Learned

That was a brief overview of how to set up and use Redux Toolkit with React. Recapping the
details:

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

SUMMARY

 Create a Redux store with configureStore
 configureStore accepts a reducer function as a named argument

 configureStore automatically sets up the store with good default settings
 Provide the Redux store to the React application components

 Put a React Redux <Provider> component around your <App />
 Pass the Redux store as <Provider store={store}>

 Create a Redux "slice" reducer with createSlice
 Call createSlice with a string name, an initial state, and named reducer functions

 Reducer functions may "mutate" the state using Immer
 Export the generated slice reducer and action creators

 Use the React Redux useSelector/useDispatch hooks in React components
 Read data from the store with the useSelector hook

 Get the dispatch function with the useDispatch hook, and dispatch actions as needed

This document is the intellectual property of Hazza Institute of Technology, Lahore that can only be used
for particular training purposes. This material may not be quoted, photocopied, reproduced in any form

without the prior written consent of Hazza Institute of Technology.

	Getting Started with React Redux
	Pre-Reqs of the Lab
	Contents of the Lab
	Learning outcome of the Lab

	Lab Solution
	Getting Started with React Redux
	Installation
	Using Create React App
	An Existing React App

	API Overview
	Provider
	Hooks

	Learning React Redux
	Learn Modern Redux Livestream

	Help and Discussion
	Install Redux Toolkit and React Redux
	Create a Redux Store
	Provide the Redux Store to React
	Create a Redux State Slice
	Add Slice Reducers to the Store
	Use Redux State and Actions in React Components

	What You've Learned
	SUMMARY

